Naukratis: Greeks in Egypt

Alexandra Villing, Marianne Bergeron, Giorgos Bourogiannis, Alan Johnston, François Leclère, Aurélia Masson and Ross Thomas

With Daniel von Recklinghausen, Jeffrey Spencer, Valerie Smallwood, Virginia Webb and Susan Woodford

http://www.britishmuseum.org/naukratis

Stone vessels

Aurélia Masson
Stone vessels form a fairly coherent, if rarely discussed, group in the literature on Naukratis, as generally for post-New Kingdom Egyptian sites. Though a wide variety of stones are represented, almost three-quarters of preserved vessels and waste products from their manufacture are in calcite (see chart below, based on 175 vessels and wastes). They are of particular importance since a local workshop producing calcite vessels is attested in Naukratis. While most vessels clearly date to within the main occupation of the site (from the late 7th century BC until the 7th century AD), a small number of vessels could also be earlier, judging from their shape or material. They will be discussed briefly at the end of the chapter. Figured alabastra and other figured vessels in gypsum-alabaster, probably made in Cyprus, are discussed separately in the chapter on figures (see the chapter on Cypriot figures in terracotta and limestone).

Chart 1: Material used for stone vessels at Naukratis (including waste from their production)

1. Calcite vessels from Naukratis

1.1 The alabastra workshop

Location

The early excavations provided plentiful evidence for the mass production of vessels in calcite at Naukratis. In the sanctuary of Apollo, Petrie unearthed ‘many thousands of alabaster drill cores from tubular drilling… and fragments of parts of alabaster vases in course of manufacture’ (Petrie 1886a, 15). Before recognizing that he was actually digging within the temenos of Apollo, he initially located these finds in the town: ‘A great quantity of alabaster cores from small tube drill holes have turned up in the town; they are evidently from a workshop, & as there are some bits of small vases with them, it seems that Naukratis was a centre of the alabaster vase business’ (Petrie 1884–5, 175). Many examples of small–
sized tapering drill-cores\(^2\) and other waste products as well as unfinished vessels survive in various collections (see for example Figs 1 and 2). Together with many limestone chips they were used to make a pavement between the area of the temple of Apollo and the northwest corner of the temenos: ‘the waste from the turner’s shop [was] afterwards brought to lay down as stone rubbish to form this pavement’ (Petrie 1886a, 15; about chippings of alabaster, but also of other stones including semi-precious ones, used in the foundations for stables belonging to the Assyrian king Sennacherib: MacGinnis 1989; Searight, Reade and Finkel 2008, 22).

Since their find-spot corresponds to a secondary deposit, it is not possible to identify the original location of the stone workshop. It might have been located in the vicinity of the temenos.

**Date**

Since Petrie associated the layer with the construction of the ‘second temple’ of Apollo, which he placed around 450 BC (Petrie 1886a, 15), the activity of the workshop has commonly been assumed to date to the Classical period (Höckmann 2007, 21 with note 103, suggesting a date in the 5th and 4th centuries BC). However, as it is now clear that the architectural elements from this second marble temple of Apollo date from the second half of the 6th century BC,\(^3\) the production of stone vessels at Naukratis is likely to have started around the end of the 26th dynasty or the beginning of the 27th dynasty (see the chapter on Topography).

**Raw materials**

The stone used in this production is quite hard, off-white, pale yellow or very light brown in colour, often banded and with occasional darker brownish veins of impurities. In the present catalogue the term calcite is used to designate this banded variety of stone, which is also called ‘Egyptian alabaster’ or ‘calcite-alabaster’ (Klemm and Klemm 2008, 147–66), a crystalline fine-grained aggregate of calcium carbonate.\(^4\) Calcite should be distinguished from the softer and easier to work alabaster, a fine-grained sedimentary rock that is an aggregate of gypsum or hydrated calcium sulphate (Aston 1994, 47–51). It is represented at Naukratis mainly by figurines, figured alabastra, bowls with figured attachments as well as a finely decorated lid (Fig. 3), all of which were most likely made on Cyprus (discussed separately in the chapter on Cypriot figures in terracotta and limestone). In scholarly literature, the two materials are, however, frequently confused. Möller (2000a, 163) for example, takes the drill-cores as evidence for the local production of figured alabastra as well. While the

---

\(^2\) Only one drill-core in granite or syenite was collected at the site (Redpath Museum, Montreal, 2493), while all the others are in calcite. Given that the Redpath Museum seem to have a few other unusual stone objects (see the last paragraph of this chapter), the provenance of this drill-core is quite dubious. It could rather originate from Tell Dafana where such a find is attested (syenite drill-core mentioned in Petrie 1888, 74 § 70; on the various drill-cores from Tell Dafana see Leclère and Spencer 2014, 87–8, pl. 30).

\(^3\) Koenigs 2007, 312, 333–41, dates the architectural pieces to the second half of the 6th century BC, noting that while they may well have belonged to a temple, they could also be from a large altar.

\(^4\) According to Aston, mineral calcite is not appropriate for the manufacture of stone vessels and was primarily used in Egypt for beads (Aston 1994, 42); she suggests instead using the term travertine for the material from which the vessels were made, ‘a coarsely crystalline, calcium carbonate rock... translucent and often banded’ (Aston 1994, 42–7; see also Harrell 1990). However, this designation is not generally accepted (on this issue, see especially Klemm and Klemm 1991).
difference between the two materials is visible even to the naked eye, scientific analysis conducted in January 2003 on drill-core fragments (Penn Museum, Philadelphia, E77; see Höckmann, 2007, 21–2 with note 106) has confirmed them to be of calcium carbonate, i.e. calcite. In the Pharaonic period, calcite was only quarried in the Eastern Desert,⁵ and for the Late Period the quarries located southeast of Beni Suef, known as ‘Wadi Sannur alabaster’ have recently been identified as a potential source of calcite (Klemm and Klemm 2008, 148–50).

1.2 Calcite vessels from other contexts

In addition to the stone vessel workshop debris, calcite vessels have also been discovered in other parts of Naukratis, first and foremost in the cemetery, with perfume containers, including alabastra, being frequent finds in tombs across the (Greek) Mediterranean. Since its excavation produced mainly Late Classical and early Ptolemaic/Hellenistic finds, these vessels have sometimes been dated by default to the second half of the 4th century BC (see for example Sakamoto 1999, 103, 206, cat. no. 144). Similar types of calcite vessels have indeed been discovered also in other Ptolemaic funerary contexts in Egypt, for example in Alexandria (von Bissing 1940, pls XI–XII). However, not all finds from the cemetery of Naukratis can be assigned a 4th-century BC date and, as is suggested below, some calcite vessels should certainly be dated earlier or later.

In a list of antiquities recovered from his excavation in 1903, Hogarth recorded three alabastra from the ‘South Site’ – meaning the area of the Great Temenos. All three are now kept in the Ashmolean Museum in Oxford (AN1896–1908–E.3695 Fig. 4; AN1896–1908–E.4556 and AN1896–1908–E.4557). One of them can be precisely reattributed to its original context of discovery, because Hogarth specifically reported the discovery of one alabastron among numerous Egyptian objects in a votive deposit to the north of the Great Temenos in his diary (Hogarth 1903, Saturday May 2nd; the find is also mentioned in Hogarth et al. 1905, 107; on this context, see Masson forthcoming b). The two other alabastra are only briefly noted in Hogarth’s diary without further indication regarding their context (Hogarth 1903, Tuesday May 5th: ‘Two alabastra – large & small’). It is possible that these alabastra were manufactured at the ‘alabastra workshop’ of Naukratis.

1.3 Types of calcite vessels

Alabastra

The bulk of calcite vessels recovered in Naukratis are alabastra.⁶ They usually have an elongated drop-shaped body with a rounded base, a short flaring neck that ends in a flattened lip of varying width, as well as a pair of small unpierced lug handles that are placed below barely marked rounded shoulders (see for example Fig. 4). As far as we can tell from the specimens we have examined first hand, no lappet in raised relief below the lug handles is visible on Naukratis specimens, though such a feature is

---

⁵ All calcite vessels, however, are not necessarily Egyptian products: Lilyquist 1996, 144–7; Testa and Lilyquist 2011.

otherwise quite common on Late Period alabastra (Searight, Reade and Finkel 2008, 32). Their surface is smoothed or polished, always undecorated.7

Naukratis was also certainly the location of alabastra production. The drill-cores and other stone waste discovered in the Apollo sanctuary fit in well with a production site, and similar waste products associated with an alabastra workshop have been discovered in Memphis (Petrie 1909b, 14, pl. XLV) and in Babylon (Koldewey 1914, 72, fig. 47). In addition to these waste products, some actual vessels are also reported to have been found in the temple of Apollo – i.e. the pavement consisting of workshop debris. The Egypt Exploration Fund distribution list for the University of Pennsylvania Museum of Archaeology & Anthropology in Philadelphia records the second temple of Apollo as a find-spot for the small alabastra inv. E47 (Fig. 5). Its thick walls and crude craftsmanship could indicate that it is an unfinished vessel. However, the external surface is smoothed and the small characteristic lug handles are well defined (for an alabastra with a similar profile, found in a context dated to the second half of the 6th century BC, see Masson 2007, 612, pl. XXVIII no. 3). Both the finds and especially the surviving drill-cores suggest that the vases produced at Naukratis were all small sized. None of the large alabastra, sometimes bearing multilingual inscriptions and offered as diplomatic gifts (such as those discussed in Shaw 2010), are attested at the site.

Alabastra were very popular across the whole Mediterranean region and beyond (numerous examples are known from Sudan, Egypt, the Levant, Mesopotamia, Eastern Greece, Italy, Spain, Carthage and Malta, listed in von Bissing 1939 and 1940; Hölbl 1979, 240–53). They were produced over a long period of time. 25th-dynasty tombs from the royal cemeteries at el-Kurru and Nuri in Sudan produced several alabastra, mainly dated to the 7th century BC (Dunham 1950, 31, fig. 11c, j and pl. XXXIX; Dunham 1955, 13, fig. 3), though very early examples of alabastra with a bag-shaped body and sometimes pierced lug handles are attested earlier (see examples published in Aston 1994, 163, no. 219) and the origins of the shape may go back as far as the end of the Middle Kingdom (Hölbl 1979, 241; Badinou 2003, 53). Assyro palaces, such as the South West Palace of Nineveh in northern Iraq, yielded examples as early as the late 8th and 7th centuries BC (discussed in Searight, Reade and Finkel 2008, 21–30). With the 26th dynasty, the use of these elegant containers was no longer confined to the elite. They began to be mass produced and widely traded, as is illustrated by the Naukratis workshop and the numerous alabastra found for example in tombs on Rhodes, and their production persisted until the Roman period (Petrie 1937, 14; Aston 1994, 166).

In addition to 6th-century BC examples, alabastra post-dating the stone workshop are also documented in Naukratis. Alabastra with a ridge above the neck and lacking lug handles do not seem to appear before the end of the mid-2nd century BC and persist into the Roman period (Aston 1994, 166, no. 230; Finkel and Reade 2002, 33). One example with a flattened

---

7 Alabastra in other materials (on such alabastra see the bibliography in Verbanck-Piérard et al. 2008, 152 note 42) – like ceramic, faience and precious metals – often display a refined decoration. See for example the silver alabastra discovered in the Işıktepe tomb in Turkey, along with ten alabastra in stone (Özgen and Öztürk 1996, nos 75–8).
base, British Museum, 1888,0601.16, and another with a very elongated body, Museum of Fine Arts, Boston, 88.728, belong to this later type (Fig. 6). The latter was found in the cemetery, one of the rare pieces of evidence for the late use of the cemetery.

Other types of calcite vessels

Several other types of calcite vessels are attested at Naukratis. Although they only occur in one or two specimens, it is possible that some of them were also produced locally.

At least two squat calcite jars were discovered in Naukratis: Fitzwilliam Museum, Cambridge, E.193a.1899 (Fig. 7) and Museum of Fine Arts, Boston, 88.729, the latter from the cemetery. Various sites from the Delta provide close parallels, including Alexandria (von Bissing 1940, pl. XII, no. 13), Herakleion-Thonis (between the 6th and 2nd centuries BC: Goddio 2008, 260 and 312, no. 133), Memphis (on an example possibly dated to the 5th century BC, British Museum, 1968,0615.1, see Searight, Reade and Finkel 2008, 78–9, fig. 52, no. 531) and Tanis (30th-dynasty context, see Bovot, Ledain, and Roussel 2000, 279, pl. XX D, nos 93–205). These jars can also be compared with various examples found outside Egypt (see for example the study by Hassell 1997, which follows the evolution of this shape during the second half of the first millennium BC into the 1st century AD in the Arabian peninsula). One of these squat jars (British Museum, 1857,1220.2) was discovered at the foot of the staircase of the Mausoleum of Halicarnassus together with several alabastra, one of which bears the name of the Persian king Xerxes (British Museum, 1857,1220.1; mentioned in Searight, Reade and Finkel 2008, 33 and 78). We suggest therefore a date between the 5th and the 4th century BC for the two Naukratite specimens.

Some calcite vessels also seem to have been inspired by ceramic shapes, Egyptian as well as non-Egyptian. This is the case for a squat lekythos discovered in the cemetery, British Museum, 1888,0601.17 (Fig. 8), which clearly imitates a 4th-century BC Greek pottery shape. Copies of lekythoi made out of bronze (from Herakleion: Goddio 2008, 171 and 325, no. 224) or faience (from the Priests’ Quarter in Karnak: Masson forthcoming d) are also documented in Egypt. More atypical are the carinated plate, Museum of Fine Arts, Boston, RES.88.41 (Fig. 9), and the tray with a ledge rim, British Museum, 1965,0930.955. Both might be imitations of late Saite–Persian ceramics (on carinated dishes and cups as well as ledge-rim plates in the Delta, see particularly Defernez 2003, 76–89, 93–9, pls IX–XI and XIII). These exceptional open shapes find few parallels in the stone vessel repertoire. Babylon provides some comparative material in calcite for the aforementioned tray (dish dated to the 7th–5th century BC: Searight, Reade and Finkel 2008, 61, fig. 33, no. 441; the authors also quote other examples from Persepolis and Nippur) as well as for the deep bowl with a pronounced foot and decorated rim, City Art Gallery & Museum, Bristol, H256 (similar in the profile of the bowl but with an undecorated rim: von Bissing 1942, 38, pl. 22).

\[8\] I am indebted to Andrea Squitieri for this reference.
Calcite vessels were primarily traded for their content, the nature of which was varied. From textual sources and other written evidence – and most recently also residue analyses – we know that alabastra could contain highly prized and exotic perfumes and unguents (on perfume in antiquity: Verbanck-Piérard et al., 2008; Carannante and D’Acunto 2012). Pliny the Elder, in his Natural History XXXVI.12, underlined that ‘alabastrites’ were thought to prevent unguents becoming spoilt (see also the stela recording the ‘Palmyrene Tariff’ dated to AD 137 which mentions aromatic oil brought in alabastra, quoted in Hassell 1997, 277–8; on alabastra containing perfumed oil or oil used in medical prescription see also Finkel and Reade 2002, 40–1; Verbanck-Piérard et al. 2008).

Some inscribed alabastra record the names of spices such as cinnamon, sweet marjoram and fenugreek (for a survey of these inscriptions see Finkel and Reade 2002, 41–5, who also warn about such inscriptions possibly referring ‘to more than one species, and not always necessarily to a modern cognate’: Finkel and Reade 2002, 39). For example, the alabastron (Fig. 10) discovered in Egypt and donated by Petrie, bears a lightly incised and painted Greek inscription that indicates κιννάμωμον as

---

9 See especially the analysis of residues in a calcite alabastron found in a 2nd-century BC tomb at Chiusi: Martelli 2008.
its content. Such spices could be used either in medical preparations or in perfumed oils. As suggested by Finkel and Reade, Egyptians ‘in the classical period were both middlemen and consumers’ of scents and spices (2002, 31). However, as is the case also with the scarab factory’s products (see the forthcoming chapter on scarabs, scaraboids and amulets), most of the alabastra made in Naukrat were probably meant for export rather than local consumption. Although it is unclear whether they were exported already filled or empty (on this question, see Verbanck-Piérard et al. 2008, 223–4), Egyptian perfume was certainly renowned in antiquity, notably in the Greek and Etruscan worlds (Bäbler 1998, 69–77).

2. Ritual and domestic vessels

2.1 Sha-basins

A few fragments of large shallow basins, in dark hard stone, called sha-basins, were discovered in Naukrat (on sha-basins: Wörterbuch der ägyptischen Sprache vol. IV, 1971, 401, 2). All these examples bear an inscription, either in hieroglyphic or demotic script (see the forthcoming chapter on Egyptian inscriptions). They are particularly well attested during the Ptolemaic period (Yoyotte 1994–5, 674).

Three fragments of such vessels in basalt have been discovered in Naukrat (British Museum, 1885,1101.22, 23 and 25). Petrie in his Journal specifically mentioned two of them – British Museum, 1885,1101.22 (Fig. 11) and British Museum, 1885,1101.23 – as coming from the northern side of the Great Temenos: ‘A very interesting find made lately in the later period (Roman) chambers built inside the temenos wall, is a fragment of a black basalt bowl some 2 or 3 feet diam[eter] & 3 or 4 in[che]s deep. Bes standing on the outer face, & a line of demotic, & on the top edge the feet of a standing figure: another fragment with more demotic was found later on’ (Petrie 1884–5, 97–8). However, a fourth fragment, British Museum, 1885,1101.24, published as also coming from this area (Petrie 1886a, pl. XXXVI, 3; Gardner 1888, 81, pl. XXIII, 3; Yoyotte 1994–5, 674), in fact has a somewhat questionable provenance, since in his Journal Petrie details that he bought it rather than excavated it (Petrie 1884–5, 73: ‘bought for 1 franc, perhaps from Sais’) (Fig. 12).
The representation of Bes is rather unusual on a shabas basin (Fig. 11), where Hathoric heads occur more frequently (see for example the 26th-dynasty shabas basin of the fourth prophet of Amun Montuemhat, British Museum, 1899,0708.167: Leclant 1961, no. 30, pls 46–9). An unprovenanced shabas basin in black basalt decorated with a Hathoric head very likely came from Naukratis, since the inscription mentions Bade, one of the Egyptian names of Naukratis (this basin, which entered the Cairo Museum in 1892, though not seen by us yet, is discussed in Daressy 1897, 22; Yoyotte 1982–3, 135, no. 8; Yoyotte 1994–5, 674–5; Guermeur 2005, 130–1).

Another inscribed stone element that could pertain to a large ritual basin is the red granite campaniform base of Nekhtnebef, son of Tefnakht and Nesnebethut (Fig. 13). Although its function is unclear, it could correspond to the base of an Hathoric basin, the dedication to Mut and Hathor of Bade, fitting well with such identification (on this monument, see Yoyotte 1982–3, 136, no. 9; Yoyotte 1994–5, 675; Jansen–Winkeln 1997; Vittmann 1999, 80, no. 5.75; Guermeur 2005, 131–32). A comparable capital-shaped base, but uninscribed and made out of in basalt, is also believed to come from Naukratis (Cairo, Egyptian Museum JE33010 for a similar but uninscribed monument see). Yoyotte argued that this very peculiar shape was influenced by non-Egyptian pieces, possibly Greek (Yoyotte 1994–5, 675).

2.2 Perirrhanteria

The Greek sanctuaries of Naukratis also yielded fragments of stone basins (e.g. British Museum, 1886,0401.1524, Fig. 14), shallow basins made of marble that would have stood on a tall foot.

They can be identified as perirrhanteria, versions of the Greek wash-basin, louterion, for cultic use (see Pimpl 1997; Krauskopf 2005; cf. also Ginouvès 1962, 77–103 and 248–53; Kurtz and Boardman 1971, 151; on the variety of spaces where such basins could be found see Durand and Lissarrague 1980). As literary sources attest, perirrhanteria were part of the standard equipment of Greek sanctuaries, often placed at the entrance to ensure visitors could wash themselves before they entered the sanctuary and therefore ritually cleansed. Examples have been found in Archaic and later sanctuaries, especially of Apollo, Artemis, Aphaia,
Athena and Hera but also other deities; an actual example of a perirrhanterion in situ beside a temple entrance was excavated in a Classical sanctuary at Stymphalos in northeastern Peloponnese (Schaus 2014).

From the early excavations in Naukratis five (or probably six) fragments of such basins (seemingly all deriving from different objects) are preserved, all of them bearing dedicatory inscriptions on the top of the rim and dating to the late Archaic or Early Classical period. It is probable that more uninscribed examples were encountered by the excavators but not kept. Only two basins have an assured find-spot, the sanctuary of Apollo (British Museum, 1886.0401.7: Petrie 1886a, pl. XIV no. A), and the ‘scarab factory’, i.e. presumably the Aphrodite sanctuary (British Museum, 1886.0401.984: Petrie 1886a, pl. XXXV no. 669). The majority of the dedications appear to refer to Apollo (see the chapter on Greek and Latin stone inscriptions). Perirrhanteria are not unusual as votive dedications and have been found in some quantity for example in the sanctuaries of Aphaia on Aigina and of Athena on Lindos (Pimpl 1997, 89–105; Krauskopf 2005). Herodotus’ mention of a dedication of one gold and one silver perirrhanterion by the 6th-century BC Lydian king Kroisos to Apollo at Delphi (Hdt 1.51) suggests that they could be high-profile votives. Their occurrence in the Apollo’s sanctuary at Naukratis may suggest that ritual purity played a particular role in the sanctuary.

Apart from stone perirrhanteria, ceramic perirrhanteria are also known from the Hellenion at Naukratis.

### 2.3 Mortars

Several stone mortars are preserved from the excavations at Naukratis. They belong to two different types: small model mortars of symbolic significance and larger mortars with a utilitarian function.

The first type, model mortars, consists of four examples in limestone (the best-preserved example is shown in Fig. 15; see also its drawing published in Petrie 1886a, 31, pl. XXVI no. 34). They were all discovered in the foundation deposits of the pylon of the Great Temenos, together with a
wide variety of models of ceremonial instruments and tools (see the chapter on Foundation deposits). Dated to the reign of Ptolemy II, their shape is typical of contemporary actual mortars with a flat base, high everted walls ending in a flat rim and two square lug handles (Aston 1994, 158, no. 201). Model mortars are attested in foundation deposits since at least the early 26th dynasty, with deposits of Psamtik I at Tell el-Balamun providing three thick-walled, handleless model mortars (Spencer 1996, 85–6, pl. 91). However, two-handed mortars such as the Naukratis examples are only securely known from deposits of the 30th dynasty onwards (Weinstein 1973, 298 and 345, no. 150).

The other category of mortar is represented by six examples. Made out of a harder stone, basalt, these shallow mortars featuring four protruding trapezoidal or rectangular handles placed at regular interval around the rim had a more practical use (Fig. 16).

Hogarth found two of them in 1903 (Ashmolean Museum, Oxford, AN1896-1908-E.4552 and AN1896-1908-E.4553) and both are mentioned in his diary (Hogarth 1903): ‘Granite shallow mortar’ uncovered on 18 April in a trench made in the area of the Hellenion, and, ‘1 small mortar Eg[yptian]’, discovered on 2 May in the southern part of the site. Traces of red ochre inside some specimens, such as one in the Ashmolean Museum, Oxford (AN1896-1908-E.4553), indicate that they were used to grind pigments. Pestles in the same material were often associated with these mortars.

Three sets of mortars with pestles in basalt were discovered during the second season at Naukratis in 1885–6, including a piece now in the Warrington Museum & Art Gallery illustrated here (Fig. 16). The distribution list of the Egypt Exploration Fund records several other examples being given to the Chautauqua Institution (now lost), noting that they were used to grind colours; the same list also records a piece of red pigment.

Five palettes found at Naukratis, all carved from dark hard stone, may also have been used to grind colours.

### 3. Some early types of stone vessels

Several vessels found at Naukratis belong to types or are made from stones that are generally not documented in the time attested for the occupation of Naukratis by the overwhelming majority of the finds, from the late 7th century BC to the 7th century AD. There are a variety of possible explanations for their presence at the site, but more often than not the find-spot information is rather dubious and the objects cannot be confidently taken as evidence for an earlier occupation of the site.

The shouldered jar in calcite (Fig. 17), British Museum, EA22235 (1885,1101.20), with pierced tubular handles and a flat base, appears to be a genuine product of the Predynastic or Early Dynastic periods.

---

11 Parallels dated to the 6th to 2nd centuries BC have been found at Thonis-Herakleion: Goddio 2008, 259 and 312, no. 136. A mortar of the same type, but of miniature size and made out of greywacke, was discovered in Tell Dafana: Petrie 1888, 73 § 70, pl. XL, 2 (republished in Leclère and Spencer 2014, 51, pl. 15, EA18559). For more finely executed dishes with four handles of similar shape see Anus and Sa’ad 1971, 233, fig. 18; Aston 1994, 164–5; Molinero 1995, 212, pl. LXIX; pl. LXX g, pl. LXXI, pl. LXXVI.

12 For a parallel from Thonis-Herakleion see Goddio 2008, 259 and 312, no. 140.
Though it is possible that the find-spot information ‘Naukratis’ in the museum register was given erroneously, the vessel could also be a treasured or reused ‘heirloom’ at the site. An example of such practices in Egypt might be the diorite gneiss vase, British Museum, EA4701, dated to the Early Dynastic period but bearing the name of Amenirdis, a divine Adoratrice of Amun who lived during the 25th dynasty; as Meyrat (2013) proposed, it could have been usurped from the tomb of the 2nd-dynasty pharaoh Khasekhemwy in Abydos. A kohl-jar typical of the early New Kingdom, but which was discovered in a sealed 7th-century BC context in Ashkelon, illustrates further this case (see the discussion in Press 2011, 423, 429, no. 12).

The use of stones otherwise more in favour in earlier periods appears to be documented at Naukratis by four fragmentary dishes or plates, all of them in the Redpath Museum in Montreal (e.g. Fig. 18). Serpentine of opaque olive green colour with black veins – used for inv. 2469.1 and 2469.3 – is well attested from the Predynastic period until the New Kingdom (Aston 1994, 59, type A of serpentine), while granular black serpentine – probably used for inv. 2469.2 – was especially popular during the Middle Kingdom and the Second Intermediate Period (Aston 1994, 59, type C serpentine). We surmise that inv. 2468 was manufactured in andesite porphyry, a stone common in Predynastic and Early Dynastic stone vessels; only purple andesite porphyry, highly valued for Roman sculptures, was still quarried later, but this stone was mainly intended for export (Aston 1994, 21–3). Serpentine as well as andesite porphyry were, however, recognized in a few two lug-handled mortars, a shape specific to the Ptolemaic or Roman period (Aston 1994, 23 note 100 and 59). The Montreal vessels do not present characteristic profiles of early periods, so a Late Period or later date is not impossible. Alternatively, the find-spot information in Montreal could be mistaken. Too few stone vessels from well-stratified late contexts in Egypt have been published so far to allow us to propose any conclusive remarks on these problematic pieces.

Figure 18 Shallow carinated plate, carved from black and greyish olive hard stone, likely serpentine; from Naukratis. Redpath Museum in Montreal, 2469.1 Photograph © Redpath Museum, McGill University. Photographer Marianne Bergeron, British Museum

13 It seems unlikely that the 26th dynasty revived this shape as part of the archaizing tendency of the period.
14 1885.1101.20 (EA22235); ‘Part of alabaster vase 6 in high’, from Naukratis.
15 The stone identifications would need to be confirmed by a specialist.